

FIELD DAY HF ANTENNAS

Lew Thompson W5IFQ 2 JUN 2020

Purpose of Field Day

- Demonstrate the ability to set up an Amateur radio station in the field on emergency power and communicate effectively over all of CONUS.
- Increase public awareness of Amateur Radio (answer questions from neighbors)
- Training (Seek help call me, 512-587-9944)
- Recruitment of new hams (neighbors)
- Have fun

HF Propagation Modes

- Free Space Line of site
- Ground Wave Follows Earth's curvature
- Ionospheric Skip
 - Long Distance with a "dead-zone"
 - NVIS (Near Vertical Incidence Sky Wave)

Optimizing HF Communications

- Ionospheric propagation
 - Frequency selection (MUF for target area)
 - Other propagation factors
- Antenna design
 - Correct directivity pattern
 - Provide usable impedance to RF transmitter

Long Distance Sky Wave

NVIS Propagation

MARS Portable Dipole

Inverted-V: Apex – 32 ft. Length – 65 ft. End heights – 15 ft. Wire - #14 AWG

NVIS Performance

Skip Performance - BAD

14.3 MHz

11

Skip Performance – 20m dipole

Option 2 – Adjustable "Reel" Dipole

LENGTH OF EACH LEG OF DIPOLE* (FT.)

		0.51	VIΠZ
Freq Mc	Dist Ft	Freq Mc	Dist Ft
20.0	11.2	11.0	20.3
19.0	11.7	10.5	21.2
18.0	12.4	10.0	22.3
17.0	13.1	9.5	23.5
16.0	13.9	9.0	24.8
15.0	14.9	8.5	26.2
14.0	15.9	8.0	27.9
13.0	17.2	7.5	29.7
12.0	18.6	7.0	31.9
11.0	20.3		

	0.2 MHz		
	Freq Mc	Dist Ft	
	7.0	31.9	
	6.8	32.8	
	6.6	33.8	
	6.4	24.8	
	6.2	36	
	6.0	37.2	
	5.8	38.4	
	5.6	39.8	
	5.4	41.3	
	5.2	42.9	
	5.0	44.6	
	4.8	46.5	
	4.6	48.5	
	4.4	50.7	
	4.2	53.1	
_	4.0	55.75	

0.1 MHz		
Freq Mc	Dist Ft	
4.0	55.75	
3.9	57.2	
3.8	58.7	
3.7	60.3	
3.6	61.9	
3.5	63.7	
3.4	65.6	
3.3	67.6	
3.2	69.7	
3.1	71.9	
3.0	74.3	

0.05 MHz		
Freq Mc	Dist Ft	
3.00	74.3	
2.95	75.6	
2.90	76.9	
2.85	78.25	
2.80	79.6	
2.75	82.6	
2.70	86.7	
2.65	84.2	

***NOTE: MEASURE FROM BALUN TO REEL END OF ROPE INSULATOR I.E., INCLUDE REEL IN TOTAL LENGTH.**

Vertical Antenna Description

- Auto-tuned vertical with ground radials
- Base height above ground 2 ft.
- Vertical height 23 ft.
- Vertical Type Shakespeare 393 Marine SSB HF
- Ground Radial length (each) 25 ft.
- Number of ground radials 4
- Auto-tuner ICOM AH-4

Vertical Antenna Pattern

Modeling – 4, 5 MHz

Sidelobe Gain Front/Sidelobe

0.0 dB

5 MHz

Elevation Plot Azimuth Angle 0.0 deg. Outer Ring -1.43 dBi		Cursor Elev Gain	141.0 deg. -1.96 dBi -0.53 dBmax	
Slice Max Gain Beamwidth	-1.43 dBi @ Elev Angle = 28.0 deg. 46.7 deg.; -3dB @ 9.1, 55.8 deg.			

-1.43 dBi @ Elev Angle = 152.0 deg.

Modeling – 10, 14 MHz

Modeling – 18, 21 MHz

18 MHz

Elevation Plot Azimuth Angle Outer Ring	0.0 deg. -0.83 dBi	Cursor Elev Gain	22.0 deg. -0.83 dBi 0.0 dBmax	Elevation Plot Azimuth Angle Outer Ring	0.0 deg. -0.92 dBi
Slice Max Gain Beamwidth Sidelobe Gain Front/Sidelobe	-0.83 dBi @ Elev Angle = 22.0 deg. 38.9 deg.; -3dB @ 8.2, 47.1 deg. -0.83 dBi @ Elev Angle = 157.0 deg. 0.0 dB			Slice Max Gain Beamwidth Sidelobe Gain Front/Sidelobe	-0.92 dBi @ Elev Angle = 23.0 deg. 42.3 deg.; -3dB @ 8.3, 50.6 deg. -0.92 dBi @ Elev Angle = 157.0 deg. 0.0 dB

21 MHz

Э	0.0 deg. -0.92 dBi	Cursor Elev Gain	23.0 deg. -0.92 dBi 0.0 dBmax
n	-0.92 dBi @ Elev Angle = 23.0 deg.		

Modeling – 28, 50 MHz

29 MHz

Elevation Plot Azimuth Angle Outer Ring	0.0 deg. 0.75 dBi	Cursor Elev Gain	15.0 deg. 0.75 dBi 0.0 dBmax
Slice Max Gain Beamwidth	0.75 dBi @ Elev Angle = 15.0 deg. 63 2 deg : _3dB @ 6 0, 69 2 deg		
Sidelohe Ceip	0.75 dBi @ Elev Apale = 165.0 dea		
Sidelope Gain Exect/Sidelohe	0.75 dbi @ Elev Angle = 165.0 deg.		

50 MHz

29.0 deg. 3.93 dBi

0.0 dBmax

Elevation Plot Azimuth Angle Outer Ring	0.0 deg. 3.93 dBi	Cursor Elev Gain
Slice Max Gain Beamwidth	3.93 dBi @ Elev Angle = 29.0 deg. 23.0 deg.; -3dB @ 18.9, 41.9 deg.	
Sidelobe Gain Front/Sidelobe	3.93 dBi @ Elev Angle = 150.0 deg. 0.0 dB	

Optimizing HF Communications

- Ionospheric propagation
 - Frequency selection
 - Other propagation factors
- Antenna design
 - Correct directivity pattern
 - Provide usable impedance to RF transmitter

Half Wave Dipole

Inverted-V Half-Wave Dipole

Adjustable "Reel" Dipole

- Adjust length for one-half wavelength
- Impedance will be close to 50 ohms and therefore no tuning required, or internal HF rig tuner can make fine adjustments (<3:1)

TUNER LOCATED AT RIG

TUNER AT ANTENNA

Auto-Tuner Near Antenna

