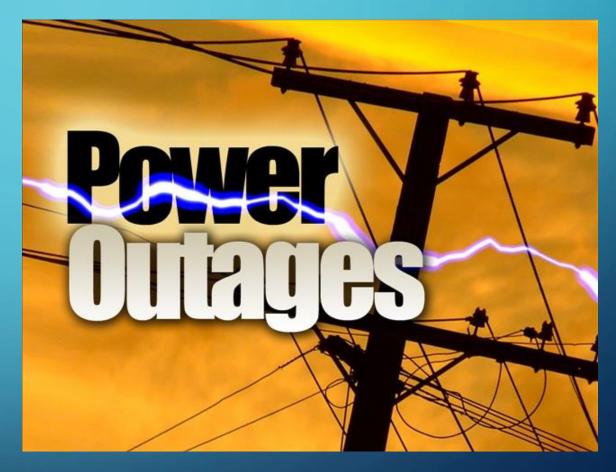


EMERGENCY GENERATORS

TRAVIS COUNTY ARES
SEPTEMBER 23, 2018

GENERATORS


- What causes power outages?
- Types of generators
- Type of fuel to use
- Generator size
- Costs
- Safety & Operation

How to make your house the one with emergency power

WHAT CAUSES POWER OUTAGES?

High Power Demand
Construction Digging
Weather
Animals
Coronal Mass Ejection
EMP
Cyber Attack
Aging Equipment

3,526 Power Outages in 2017 affecting 36.7 million people

AGING TRANSMISSION & DISTRIBUTION LINES

In 2017 the American Society of Civil Engineers reported that most of the 640,000 miles of electric transmission and distributions lines were constructed in the 1950s and 1960s with a 50-year life expectancy

Dr. Joshua Rhodes of the University of Texas Energy Research Department estimates replacement cost to be 1.5 – 2 Trillion dollars

AC VS DC

CONVENTIONAL

- Convert mechanical energy into electrical energy
- Produce AC power

INVERTOR

- Invertor generators supply both AC & DC power
- The engine is connected to an alternator, which produces
 AC electricity
- Then a rectifier is used to convert the AC power to DC and capacitors are used to smooth it out

COMPARISON

CONVENTIONAL

- AC power
- Available 700 150,000 watts
- Runs full throttle
- Significantly less initial cost for equal power output
- Less complex

INVERTOR

- DC power
- Available 1000 5000 watts
- Variable Speed based on load
- Quieter
- Smaller & lighter
- Clean, consistent power
- Can be run in parallel

WHICH IS BEST?

Depends on your use and budget

WHICH TYPE FUEL?

- Gasoline
- Diesel
- Natural Gas
- LPG/Propane
- Dual Fuel (Gasoline or Propane)
- Multiple Fuel (Gasoline / Propane / Natural Gas)

GASOLINE POWER

PRO

- Lowest initial Cost
- Wide availability
 - PREDATOR 8750

- Refueling danger due to spillage on a hot engine
- Fuel storage fire issues
- Fuel degrades over time
- E0 gas hard to find, E10 gas gunks up the carburetor
- Requires 3600 rpm run speed

DIESEL FUEL

PRO

- Long standing proven technology
- Runs at 1800 rpms instead of 3600 rpms
- Longer run time & durability
- Low storage fire risk

- Higher initial costs
- Diesel degrades over time
- Emission regulations require ultra-low sulfur diesel which is less stable
- Rising fuel costs

NATURAL GAS

PRO

- No refueling issues
- No fuel storage issues
- Low fuel costs
- Some run at 1800 rpms other at 3600 rpms

- Fuel supply delivery outside your control
- In an emergency delivery is subject to prioritization and containment

LPG/PROPANE

PRO

- Fuel stored on site
- Unlimited shelf-life
- Runs clean without carburetor fouling

- Requires 3600 rpm run speed
- Power output 10% less than a gas or diesel fueled generator
- Fuel tanks do not fill to capacity

DUAL & MULTI-FUEL PRO CON

- Take advantage of preferred fuel type, with a back-up capacity if that fuel is unavailable
- Better manage refueling issues

- Higher initial cost
- Power is 10% less when running on natural gas or propane
- Storing multiple fuels more complex

SIZING YOUR GENERATOR

- Make a list of the items that need to be powered by the generator.
- Make a note of the running and starting wattage of the respective items.
- Total the wattage requirements using the starting wattage for items that require them.
- Allow at least 25% above the running wattage total
- Note best fuel efficiency is running at 50% load

ITEMS TO CONSIDER

Basic Items

	Running Watts	Starting Watts
Refrigerator w/freezer	700	2200
Deep Freezer	500	1500
Six 75w light bulbs	450	
Radio 30A power supp	oly 300	
Phone charger	20	
TOTAL Needed	4470 W	atts

Laptop	200 watt
10,000 BTU Room A/C	1200/3600
Box Fan	200
Microwave	1200
Coffee Maker	1000
Space Heater	1800
TV 27"	500
DVD	100

SMALL INVERTOR 2000W CHOOSE WHAT YOU CAN RUN

Basic Items

	Running Watts	Starting Watts
Refrigerator w/freezer	700	2200
Deep Freezer	500	1500
Six 75w light bulbs	450	
Radio 30A power supp	ly 300	
Phone charger	20	
TOTAL Needed	4470 W	Vatts

Laptop	200 watt
10,000 BTU Window A/C	1200/3600
Box Fan	200
Microwave	1200
Coffee Maker	1000
Space Heater	1800
TV 27"	500
DVD	100

MEDIUM GENERATOR 4500W CHOOSE WHAT YOU CAN RUN

Basic Items

Running Watts Starting Watts Refrigerator w/freezer 700 2200 **Deep Freezer** 500 1500 Six 75w light bulbs 450 Radio 30A power supply 300 Phone charger 20 **TOTAL Needed 4470 Watts**

Laptop	200 watt
10,000 BTU Window A/C	1200/3600
Box Fan	200
Microwave	1200
Coffee Maker	1000
Space Heater	1800
TV 27"	500
DVD	100

LARGE GENERATOR 12000W CHOOSE WHAT YOU CAN RUN

Basic Items

Starting Watts **Running Watts** Refrigerator w/freezer 700 2200 **Deep Freezer** 500 1500 Six 75w light bulbs 450 Radio 30A power supply 300 Phone charger 20 **TOTAL Needed 4470 Watts**

Laptop	200 watt
10,000 BTU Window A/C	1200/3600
Box Fan	200
Microwave	1200
Coffee Maker	1000
Space Heater	1800
TV 27"	500
DVD	100

LARGE GENERATOR NOTES

- Allow extended run time
- Can run your air conditioner
- Can run your whole house
- Require a starting battery
- Require a transfer switch which must be installed by a certified electrician
- Require a water cooling system

TYPICAL COST\$

GENERATOR	WATTAGE	TYPICAL COST	
Recreational Inverter	Up to 2000W	\$400-\$1000	
Mid Size Inverter	Up to 3500W	\$1000-\$1700	
Large Inverter	Up to 7500W	\$1400-\$4000	
Portable Generator	Up to 7500W	\$350-\$2800	
Home Standby Generator	Up to 20Kw	\$3000-\$10,000	
Diesel	10Kw-24Kw	\$3000-\$12,000	

SHOULD THE GENERATOR BE GROUNDED

OSHA states the frame of a portable generator need not be grounded (connected to earth) and that the frame may serve as the ground (in place of the earth),

IR

The generator supplies only equipment cord and plug connected equipment through receptacles mounted on the generator 1926.404(f)(3)(i)(A)

The noncurrent carrying metal parts of equipment are bonded to the generator frame AND the equipment grounding conductor terminals that are part of the generator are bonded to the generator frame.

1926.404(f)(3)(i)(B)

DEVICE REQUIREMENTS & MAX CORD LENGTH BY WIRE GAUGE

Amps	Watts	#10	#12	#14	#16
10A	1200	250'	150'	100'	50'
20A	2400	125'	75'	50'	-
30A	3600	65'	-	-	-

Make Sure the Power Cord is Rated for Outdoor Use

HOW TO RUN YOUR POWER CORDS THROUGH THE WINDOW

Cut a notch in a board

Sized to fit the power cord

Cut the board To fit the window

Temporary
Power
outlet

GENERATOR SAFETY

A DANGER

Using a generator indoors CAN KILL YOU IN MINUTES.

Generator exhaust contains carbon monoxide. This is a poison you cannot see or smell.

NEVER use inside a home or garage, EVEN IF doors and windows are open.

Only use OUTSIDE and far away from windows, doors, and vents.

KEEP THE GENERATOR DRY

- Keep outlets 100% dry
- Maintain air flow
- Be sure the enclosure can handle the elements and wind

GASOLINE REFUELING SAFETY

- Turn the generator off and let it cool for 2 minutes before taking off the gas cap
- Do not let gas spill on the hot engine
- Do not overfill

CONNECTING TO THE GENERATOR

- 1. Start the generator
- 2. Allow it to run for 2-5 minutes to stabilize
- 3. Plug in the highest draw item
- 4. Allow the engine to stabilize
- 5. Repeat plugging in one item at a time, followed by allowing the engine to stabilize

STOPPING THE GENERATOR

- 1. Turn off and unplug each electric load, one at time
- 2. Run the generator at no load for several minutes
- 3. Turn off the fuel valve until fuel starvation has stopped the engine
- 4. Turn off the engine switch

 Continue if a gasoline engine
- 5. Remove the spark plug cap
- 6. Crank the engine to drain any gasoline from the carburetor jets
- 7. Clean the carburetor
- **8.** Drain the fuel tank

QUESTIONS/COMMENTS

